Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES.
نویسندگان
چکیده
Speciation of copper in the channels of MCM-41 during reduction of NO with CO at 473-773 K was studied by in situ extended X-ray absorption fine structural (EXAFS) and X-ray absorption near edge structural (XANES) spectroscopies in the present work. The component fitted (in situ) XANES spectra of the catalyst showed that about 72% of metallic copper (Cu(0)) in MCM-41 was oxidized to higher oxidation state coppers (Cu(II) (46%) and Cu(I) (26%)) during the NO reduction process (at 473 K). By EXAFS, we also found that in the NO reduction process, oxygen was inserted into the metallic copper matrix and led to a formation of the copper oxide species with a Cu-O bond distance of 1.93 A which was greater than that of the model compound Cu(2)O (typically 1.86 A). At 573-673 K, mainly Cu(II) was found in the channels of MCM-41. Nevertheless, at a higher temperature (e.g., 773 K), about 61% Cu(I), 31% Cu(II), and 8% Cu(O) with averaged Cu-Cu and Cu-O bond distances of 3.04 and 1.88 A, respectively were observed, that might account for the high selectivity-to-decomposition (S/D) ratios for yields of N(2) and CO(2) in the catalytic reduction of NO with CO.
منابع مشابه
In-situ study of MCM-41-supported iron oxide catalysts by XANES and EXAFS
Our study focuses on the structural evolution of MCM-41-supported iron oxide under the reducing environment of catalyst pretreatment and ethylbenzene dehydrogenation reaction. Powder X-ray diffraction (XRD) analysis showed that the iron oxide is well-dispersed on the surface of the support with no detectable diffraction peaks from iron oxide. X-ray absorption near edge structure (XANES) study i...
متن کاملThe CuCl2/Al2O3 Catalyst Investigated in Interaction with Reagents
Alumina supported CuCl2, the basic catalyst for ethylene oxychlorination, has been investigated by UV-Vis spectroscopy, EPR, EXAFS and XANES in a wide range (0.25-9.0 wt%) of Cu concentration. We have evidenced that, at low Cu content, the formation of a surface aluminate species takes place. The formation of this surface copper aluminate stops at 0.95 wt% Cu / 100 m; at higher Cu concentration...
متن کاملSelective Catalytic Reduction of CuO/SiO2 Nano-composites towards NO Reduction in Gas-phase
The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method. In this investigation, a new molar ratio of H2O/TEOS was determined to be 11.7. Also, the necessary amounts of tri-hydrated copper nitrate and penta-hydrated copper sulfate were added to the solution in such a manner that the concentration of the copper oxide in final solut...
متن کاملExtraction of nanosize copper pollutants with an ionic liquid.
Speciation and possible reaction paths of nanosize copper pollutants extracted with a RTIL (room-temperature ionic liquid ([C4mim][PF6], 1-butyl-3-methylimidazolium hexafluorophosphate)) have been studied in the present work. Experimentally, in a very short contact time (2 min), 80-95% of nanosize CuO as well as other forms of copper (such as nanosize Cu, Cu2+, or Cu(II)(ads) (in the channels o...
متن کاملSynthesis, Characterization and Studies on Catalytic Behavior of Mn(?) Complex with 2, 2? Bipyridine, 1, 1? Dioxide Ligand within Nanoreactors of MCM-41
Manganese (?) complex with 2, 2? bipyridine, 1, 1? dioxide (bpdo) ligand was immobilized within nanoreactors of MCM-41. The immobilized complex was characterized by powder x-ray diffraction (XRD), nitrogen adsorption desorption, and FTIR. The pore volume, surface area and pore diameter of MCM-41 decreased after immobilization of Mn complex. Three bands observed at 1250, 1220 cm?1 and 757 cm?1 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemosphere
دوره 50 8 شماره
صفحات -
تاریخ انتشار 2003